JOURNAL OF APPROXIMATION THEORY 40, 242-245 (1984)

On a Problem of Rivlin in L_p (1 < $p < \infty$) Approximation*

YING GUANG SHI

Computing Center, Chinese Academy of Sciences P.O. Box 2719, Peking, People's Republic of China

Communicated by R. Bojanic

Received September 9, 1982

A partial answer to a problem of Rivlin ("Abstract Spaces and Approximation," Berkhäuser Verlag, Basel/Stuttgart, 1969) in L_p (1 approximation is given.

1. INTRODUCTION

In a conference held at Oberwolfach in 1968, Rivlin [1] proposed the following problem:

Characterize those *n*-tuples of algebraic polynomials $\{p_0, p_1, ..., p_{n-1}\}$ with degrees satisfying

$$\deg p_i = j$$
 $(j = 0, 1, ..., n - 1)$

for which there exists an $f \in C[-1, 1]$ such that the polynomial of best uniform approximation of degree j to f is p_j (j = 0, 1, ..., n - 1).

Several authors have studied this problem (see the references in [2]). In this paper we consider the above problem in C[-1, 1] with the L_p (1 norms and give a partial answer.

THEOREM 1. Let V_1 and V_2 be Chebyshev subspaces with dimensions m and n (m < n), respectively. Let $V_1 \subset V_2$ and $v_j \in V_j$ (j = 1, 2). If there exists an $f \in C[-1, 1]$ such that v_j is a best L_p (1) approximation $to f from <math>V_j$ (j = 1, 2), then the function $v = v_2 - v_1$ changes sign at least m times in [-1, 1].

However, in general, this condition is not sufficient, because we have

THEOREM 2. Let V_1 and V_2 be subspaces of C[-1, 1]. Let $V_1 \subset V_2$ and

* Supported by a grant to Professor C. B. Dunham from the Natural Sciences and Engineering Research Council of Canada.

 $v_j \in V_j$ (j = 1, 2). Then there exists an $f \in C[-1, 1]$ such that v_j is a best L_2 approximation to f from V_j (j = 1, 2) if and only if v_1 is a best L_2 approximation to v_2 from V_1 .

Some notation is needed in the following proof:

- $Z_{+}(g) = \{x \in [-1, 1]: g(x) > 0\},\$ $Z_{-}(g) = \{x \in [-1, 1]: g(x) < 0\},\$ $Z(g) = \{x \in [-1, 1]: g(x) = 0\}.$
 - 2. Proof of Theorem 1

Suppose on the contrary that there exists an $f \in C[-1, 1]$ such that v_j is a best approximation to f from V_j (j = 1, 2), but the condition of Theorem 1 is not satisfied, i.e., v changes sign at most m-1 times. In this case we claim that for every $x \in [-1, 1]$ we have either

$$f(x) \leq \min\{v_1(x), v_2(x)\}$$
 or $f(x) \geq \max\{v_1(x), v_2(x)\}.$ (1)

Whence, assume that $Z(v) \cap (-1, 1) = \{x_1, ..., x_k\}$ and $x_0 = -1 < x_1 < \cdots < x_k < x_{k+1} = 1$, then $f - v_2$ does not change sign on each of the intervals $[x_i, x_{i+1}]$, i = 0, 1, ..., k. Thus $f - v_2$ changes sign at most k times. Since k < n, this is a contradiction [3, Theorem 4].

The remainder of the proof is devoted to showing (1). It is well known that

$$\int_{[-1,1]} u |f - v_j|^{p-1} \operatorname{sgn}(f - v_j) \, dx = 0, \qquad \forall u \in V_j, \quad j = 1, 2$$

or

$$\int_{Z_{+}(f-v_{j})} u |f-v_{j}|^{p-1} dx = \int_{Z_{-}(f-v_{j})} u |f-v_{j}|^{p-1} dx, \quad \forall u \in V_{j}, \quad j = 1, 2.$$
(2)

Since v changes sign at most m-1 times in [-1, 1], there exists a $w \in V_1$ such that

$$\operatorname{sgn} w(x) = \operatorname{sgn} v(x), \quad \forall x \in [-1, 1] \setminus Z(v)$$

We first examine several simple inequalities

$$\int_{Z_{+}(f-v_{1})\cap Z_{+}(f-v_{2})} w \left| f-v_{1} \right|^{p-1} dx \ge \int_{Z_{+}(f-v_{1})\cap Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx, \quad (3)$$

YING GUANG SHI

$$\int_{Z_{+}(f-v_{1})\cap Z(f-v_{2})} w |f-v_{1}|^{p-1} dx \ge 0,$$

$$\int_{Z(f-v_{1})\cap Z_{+}(f-v_{2})} w |f-v_{2}|^{p-1} dx \le 0.$$
(5)

In fact, on $Z_+(f-v_1) \cap Z_+(f-v_2)$ since for $x \in Z_+(v)(Z_-(v))$ we have that w(x) > 0 (<0) and $f(x) > v_2(x) > v_1(x)$ ($f(x) > v_1(x) > v_2(x)$),

$$w(x) |f(x) - v_1(x)|^{p-1} \ge w(x) |f(x) - v_2(x)|^{p-1}.$$
(6)

On the other hand, (6) is also valid for $x \in Z(v)$. Thus (3) holds. Inequality (4) results from that on $Z_+(f-v_1) \cap Z(f-v_2) v(x) = v_2(x) - v_1(x) = f(x) - v_1(x) > 0$ and, hence, w(x) > 0. Inequality (5) results from that on $Z(f-v_1) \cap Z_+(f-v_2) v(x) = v_2(x) - v_1(x) = v_2(x) - f(x) < 0$ and, hence, w(x) < 0.

Now, denoting that

$$I_{j}^{+} = \int_{Z_{+}(f-v_{1})\cap Z_{-}(f-v_{2})} w |f-v_{j}|^{p-1} dx,$$

$$I_{j}^{-} = -\int_{Z_{-}(f-v_{1})\cap Z_{+}(f-v_{2})} w |f-v_{j}|^{p-1} dx, \qquad j = 1, 2,$$

from (3)-(5) it follows that

$$\begin{split} \int_{Z_{+}(f-v_{1})} w \left| f-v_{1} \right|^{p-1} dx \\ &= \int_{Z_{+}(f-v_{1}) \cap Z_{-}(f-v_{2})} w \left| f-v_{1} \right|^{p-1} dx + \int_{Z_{+}(f-v_{1}) \cap Z_{+}(f-v_{2})} w \left| f-v_{1} \right|^{p-1} dx \\ &+ \int_{Z_{+}(f-v_{1}) \cap Z(f-v_{2})} w \left| f-v_{1} \right|^{p-1} dx \\ &\geqslant I_{1}^{+} + \int_{Z_{+}(f-v_{1}) \cap Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx \\ &= I_{1}^{+} + \int_{Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx - \int_{Z(f-v_{1}) \cap Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx \\ &- \int_{Z_{-}(f-v_{1}) \cap Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx \\ &\geqslant I_{1}^{+} + I_{2}^{-} + \int_{Z_{+}(f-v_{2})} w \left| f-v_{2} \right|^{p-1} dx. \end{split}$$

244

Similarly we can obtain

$$\int_{Z_{-}(f-v_{2})} w |f-v_{2}|^{p-1} dx \ge I_{1}^{-} + I_{2}^{+} + \int_{Z_{-}(f-v_{1})} w |f-v_{1}|^{p-1} dx.$$

By (2) the previous two inequalities imply that

$$I_1^+ + I_2^+ + I_1^- + I_2^- \leq 0.$$

But it is easy to see that $I_j^+ \ge 0$ and $I_j^- \ge 0$, j = 1, 2. So $I_j^+ = I_j^- = 0$, j = 1, 2. Therefore

$$Z_{+}(f-v_{1}) \cap Z_{-}(f-v_{2}) = Z_{-}(f-v_{1}) \cap Z_{+}(f-v_{2}) = \emptyset$$

and (1) is proven.

3. PROOF OF THEOREM 2

Sufficiency is trivial, say, $f = v_2$. For necessity it is well known that

$$\int_{\{-1,1\}} u(f-v_j) \, dx = 0, \qquad \forall u \in V_j, \qquad j = 1, 2.$$

Hence

$$\int_{[-1,1]} u(v_2 - v_1) \, dx = 0, \qquad \forall u \in V_1,$$

which means that v_1 is a best L_2 approximation to v_2 from V_1 .

References

- 1. T. J. RIVLIN, New and unsolved problems, No. 14: Best algebraic approximation, *in* "Abstract Spaces and Approximation," Vol. 10, p. 421, Birkhauser Verlag, Basel/Stuttgart, 1969.
- 2. M. R. SUBRAHMANYA, On simultaneous best approximations in $C^{1}[a, b]$, J. Approx. Theory 26 (1979), 101–107.
- 3. C. B. DUNHAM, Families satisfying the Haar condition, J. Approx. Theory 12 (1974), 291-298.